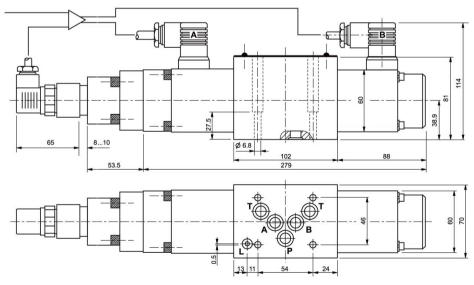


DPG-03 SERIES


Characteristics

Models

Symbol	A/VA max.	∆p [bar]	Qnom.:l/min [l/min]		Pnom. [bar]	[kg]	Models
	3.7/60	5	32	32	P,A,B: 315	8	DPG-03-3C2-32
			63	63	T:250		DPG-03-3C2-63
	3.7/60	5	32	32	P,A,B:	8	DPG-03-3C40-32
			63	63	T:250		DPG-03-3C40-63
DF				DPG-03		0.3	DPE-03

Dimensions

Dimensions of mounting hole configuration NG 10 ISO 4401 (Additional port L)

DPG-03 SERIES

Characteristics

General							
Construction	Spool type valve						
Actuation	Proportional solenoid with position control						
Connection type	Subplate, mounting hole configuration NG 10 ISO 4401 + L						
Mounting position	optional						
Ambient temperature range	-20 ~ +50°C						
Hydraulic							
Pressure medium	Hydraulic oil as per DIN 51 524 535, other fluids after prior consultation						
Viscosity, recommended	20 ~ 100 mm ² /s						
max. permitted	10 ~ 800 mm ² /s						
Pressure medium temperature	−20 ~ +80°C						
Filtration	Permissible contamination class of Achieved using filter						
	pressure medium as per NAS 1638 $\beta_X = 75$						
In line with operational reliability	8 X = 10						
and service life	9 20						
	10 25						
Flow direction	cf. symbol						
Nominal flow (at △p=5bar)*	32 l/min 63 l/min(per channel)						
Leakage/Metering edge	AB A T-90 cm3/min						
(△p=100 bar)	$B \rightarrow T=80 \text{ cm}^3/\text{min}$						
Leakage drain	$A \rightarrow T = 0.4 \sim 0.8 \ \ell/min$						
(△p=5 bar)	$A \rightarrow 1=0.4 \sim 0.8 \ \ell/min$ $B \rightarrow T=0.4 \sim 0.8 \ \ell/min$						
Max. working pressure	Ports P, A, B: 315 bar						
	Port T: 250 bar						
	Port L: ≤ 2 bar						
Electrical							
Cyclic duration factor	100%						
Degree of protection	IP 65 as per DIN 40 050 and IEC 14 434/5						
Solenoid connector	Connector DIN 43 650/ISO 4400						
Position transducer connector	Special connector						
Solenoid current	max. 3.7 A						
Coil resistance R20	2.5Ω						
Max. power consumption at 100% load	60 VA max						
and operational temperature							
Static/Dynamic							
Hysteresis	≦ 0.75%						
Range of inversion	≦ 0.5%						
Manufacturing tolerance	≈10%						
Response time 100% signal change	≈50 ms						
10% signal change	≈20 ms						
	n with proportional amplifier: DPF-03						

All characteristic values in connection with proportional amplifier: DPE-03

*Nominal flow

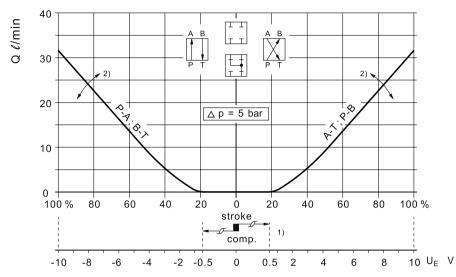
This is always based on a pressure differential of $\triangle p$ =5 bar at the throttle point.

Where other pressure differentials are involved, flow is calculated according to the following formula:

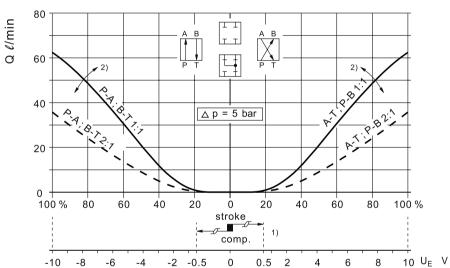
$$Q_x = Q_{nom.} \cdot \sqrt{\frac{\Delta P_x}{5}}$$

However, the **operating limits** must be borne in mind here. When the operating limits are exceeded, the ensuing flow forces lead to uncontrollable spool movements.

To achieve effective limitation of $\triangle p$, use is made of **pressure compensators**.

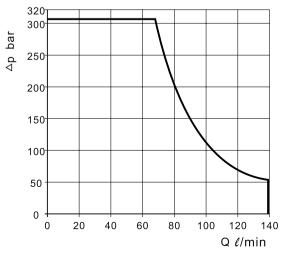


DPG-03 SERIES


Performance curves

 $v = 35 \text{ mm}^2/\text{s}$

Q_{nom.} = 32 ℓ/min


Q_{nom.}=63 ℓ/min

Valve amplifier

- 1) Zero adjustment $\rightarrow \pm 0.5 \text{ V}$
- 2) Gain adjustment

Operating limits

